

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

	CANDIDATE NAME			
	CENTRE NUMBER		CANDIDATE NUMBER	
*				0653/52
0 0	Paper 5 Practical Test		Oc	tober/November 2017
				1 hour 30 minutes
00	Candidates answer on	the Question Paper.		
4	Additional Materials:	As listed in the Confidential Instructions.		
*				

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. Notes for Use in Qualitative Analysis for this paper are printed on page 8.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
1			
2			
3			
Total			

This document consists of 8 printed pages.

- 1 You are provided with a seedling from a seed that has germinated and started to grow.
 - (a) In the box below make a large pencil drawing of the seedling.

Label the root and the stem.

[3]

(b) (i) Measure the length of the seed provided (excluding the root and stem).

Record this length in millimetres.

length of seed = mm [1]

(ii) Use a straight line to show this length on your drawing.

Record the length of this line in millimetres.

length of line on drawing = mm [1]

(iii) Use your measurements to calculate the magnification of your drawing.

magnification =[1]

- (c) You are provided with some pureed seeds. You are going to test the seeds for the presence of protein and starch. The result of testing for reducing sugar is already given in Table 1.1.
 - (i) Carry out the other two tests using the solutions supplied and complete Table 1.1 to show your observations.
 - Use 1 cm depth of seed puree in each of the tests.
 - Add 2 cm depth of test solution for the biuret test.
 - Add a few drops of iodine solution for the iodine test.

Table 1.1

	Benedict's test	biuret test	iodine test
nutrient tested for	reducing sugar	protein	starch
observation with seed puree	green precipitate		

[2]

(ii) State the nutrients present in the seeds.

.....[2]

2 Notes for use in Qualitative Analysis for this question are printed on page 8.

A good reagent in qualitative analysis gives positive and different results with different ions.

H is a sodium compound. You are going to investigate the reactions of **H** and assess whether **H** could be used as a reagent to identify cations. You have been given a solution of **H** for the reactions and a sample of solid **H** for (**c**).

(a) You are provided with the following solutions:

ammonium sulfate copper sulfate iron(III) sulfate zinc sulfate

- (i) For each of the above solutions place about 1 cm³ of the solution into a clean test-tube.
 - Add solution **H** to each test-tube until there is no further change.
 - If no change is observed in a test-tube keep for use in (a)(ii).

Record your observations in Table 2.1.

Table 2.1

solution	observations
ammonium sulfate	
copper sulfate	
iron(III) sulfate	
zinc sulfate	
	[4]

- (ii) If no change is observed in a test-tube in (i), stir the mixture.
 - If necessary pour away some of the mixture to leave a half-filled test-tube.
 - Then heat the test-tube gently and carefully bring to the boil.
 - Test for the presence of ammonia gas.

Record your observations.

test		 	 	 	 	
obse	ervations	 	 	 	 	[1]

(b) Use your observations in (a) to explain whether H could be used as a reagent to identify the cations in the four solutions.

You should make comparisons with the usual reagents for analysis of cations.

(c) A student adds barium nitrate solution to solution **H** and a white precipitate is produced. The student concludes that **H** is sodium sulfate.

You are going to check the student's conclusion.

(i) Remove the bung from the test-tube containing **solid H** and add dilute hydrochloric acid.

Record your observations.

......[1]

(ii) Use your observations in (c)(i) to state the mistake made by the student when testing H with barium nitrate solution which led the student to conclude that sulfate ions are present.

.....[1]

- **3** You are going to investigate the cooling rates of different volumes of water. A supply of hot water, a beaker and a thermometer have been provided for you.
 - Pour hot water into the beaker up to the 200 cm³ mark.
 - Place the thermometer into the beaker.
 - Wait approximately 90 s.
 - (a) (i) Start the stopclock.

Record, in Table 3.1, the temperature θ of the hot water at time t = 0. [1]

(ii) Record, in Table 3.1, the temperature θ of the water and the time *t* at 30s intervals for 3 minutes. [3]

	cooling of 200 cm ³ of hot water	cooling of 100 cm ³ of hot water
time <i>t</i> /s	temperature θ / °C	temperature θ /°C
0		

Table 3.1

- (b) Empty the beaker.
 - Pour hot water into the beaker up to the 100 cm³ mark.
 - Place the thermometer into the beaker.
 - Wait approximately 90 s.

Repeat (a)(i) and (a)(ii).

(c) Suggest why it is important to wait 90s before measuring the initial temperature of the hot water.

[1]

.....[1]

(d) A student suggests that the rate of cooling is slower for the larger volume of water than for the smaller volume of water.

State whether your **results** support this suggestion. Justify your answer **by referring to your results** in Table 3.1.

	statement	
	justification	
		[2]
(e)	The experiment is repeated with the same apparatus to check the results.	
	Suggest two variables that should be kept constant to give a fair comparison.	
	variable 1	
	variable 2	
		[2]

NOTES FOR USE IN QUALITATIVE ANALYSIS

Tests for anions

anion	test	test result	
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced	
chloride (C <i>l</i> ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.	
nitrate (NO3 ⁻)add aqueous sodium hydroxide, then aluminium foil; warm carefully		ammonia produced	
sulfate (SO ₄ ^{2–}) [in solution]	acidify with dilute nitric acid, then add aqueous barium nitrate	white ppt.	

Tests for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia	
ammonium (NH ₄ ⁺)	ammonia produced on warming	_	
copper(II) (Cu ²⁺) light blue ppt., insoluble in excess		light blue ppt., soluble in excess, giving a dark blue solution	
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess	
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess	
zinc (Zn ²⁺)	white ppt., soluble in excess, giving a colourless solution	white ppt., soluble in excess giving a colourless solution	

Tests for gases

gas	test and test results
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	'pops' with a lighted splint
oxygen (O ₂)	relights a glowing splint

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.